Tension Force Formula:
From: | To: |
Tension force on a pulley refers to the force exerted by a rope, cable, or string that is being pulled tight by forces acting from opposite ends. In a pulley system with two masses, the tension can be calculated using the specific formula that accounts for both masses and gravitational acceleration.
The calculator uses the tension force formula:
Where:
Explanation: This formula calculates the tension in a string connecting two masses over a pulley, assuming a frictionless pulley and massless string.
Details: Calculating tension force is essential in physics and engineering for designing pulley systems, understanding mechanical advantage, and analyzing forces in various applications from simple machines to complex industrial systems.
Tips: Enter both masses in kilograms and gravitational acceleration in m/s². For Earth's gravity, use 9.8 m/s². All values must be positive numbers.
Q1: What if the pulley has friction?
A: This formula assumes a frictionless pulley. For pulleys with friction, additional factors must be considered in the calculation.
Q2: Can this formula be used for multiple pulleys?
A: This specific formula is designed for a simple single pulley system with two masses. Multiple pulley systems require more complex calculations.
Q3: What units should I use for mass?
A: Mass should be entered in kilograms (kg) for proper Newton force calculation.
Q4: How does tension change if one mass is zero?
A: If either mass is zero, the tension would be zero since there would be no force creating tension in the string.
Q5: Is air resistance considered in this calculation?
A: No, this formula assumes ideal conditions without air resistance or other external forces.